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Abstract. The one-dimensionalS = 1 quantum spin chain with a linear and bilinear nearest-
neighbour interaction of equal strength is integrable by the nested Bethe ansatz. In this paper the
model is studied in the presence of an external magnetic field and an internal crystal field. By
solving the Bethe ansatz equations for chains up to lengthN = 360 we construct the complete
phase diagram of the system. We discuss how the magnetization curves depend on the internal
field. In the SU(3) phase, where all three densities of atoms withS3-component−1, 0, +1
are non-vanishing, lines of constant density can be approximately parametrized by modified
hypocycloides.

1. Introduction

Remarkable phenomena can be observed if an antiferromagnet is exposed to a uniform
magnetic field. In the case of the one-dimensional spin-1

2 antiferromagnetic Heisenberg
model

H = 1
2

N∑
x=1

σ(x)σ(x + 1) − B

N∑
x=1

σ3(x) (1.1)

these phenomena appear as field-dependent singularities in the static structure factors and
are generated by ’soft modes’ in the excitation spectrum. These gapless excitations lead to
infrared singularities in the corresponding dynamical structure factors.

We expect that similar phenomena can be observed in other antiferromagnetic models
as well, for example, in spin-1 models. The bilinear–biquadratic spin-1 model with
Hamiltonian

Hbb(θ) = cosθ
N∑

x=1

S(x)S(x + 1) + sinθ

N∑
x=1

[S(x)S(x + 1)]2 (1.2)

interpolates between the spin-1 Heisenberg model withθ = 0 and theSU(3) symmetric
Lai–Sutherland model withθ = π/4. The first model (θ = 0) is expected to have a gap
according to Haldane’s conjecture [1]. Moreover, it is not solvable in the sense of the Yang–
Baxter equations. Therefore, most investigations of this model are restricted to a numerical
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diagonalization of the Hamiltonian on small lattices. On the other hand, the Lai–Sutherland
model is known to be critical (gapless) and solvable by means of the nested Bethe ansatz
[2]. From this point of view it is the natural spin-1 extension of the spin-1

2 Heisenberg
model.

Owing to its solvability, the response of the Lai–Sutherland model to external and
internal fields can be studied on large systems as will be demonstrated in this paper. Our
starting point is the Hamiltonian

H = H0 − BS3 + DS
(2)

3 (1.3)

where

H0 =
√

2Hbb(π/4) =
N−1∑
x=1

{S(x)S(x + 1) + [S(x)S(x + 1)]2} (1.4)

S3 ≡
N∑

x=1

S3(x) and S
(2)

3 ≡
N∑

x=1

[S3(x)]2. (1.5)

Periodic boundary conditions are used so thatS(N + 1) = S(1). The Si(x) are spin-1
representations of theSU(2) algebra. The operatorsS3 andS

(2)

3 commute with the bilinear–
biquadratic interactionH0:

[H0, S3] = [H0, S
(2)

3 ] = 0. (1.6)

They take into account the coupling to an external magnetic fieldB and to a single site
anisotropyD, which can also be interpreted as an internal crystal field.

Owing to the commutation relations (1.6) the Hamiltonian can be brought into block
form. The ground states in these blocks can be classified by the ‘magnetizations’

M ≡ MB ≡ S3

N
and MD ≡ S

(2)

3

N
. (1.7)

From the ground-state energies per siteε(MB, MD) we obtain the magnetization curves in
analogy to the spin-12 case:

∂ε(MB, MD)

∂MB

= B and
∂ε(MB, MD)

∂MD

= D. (1.8)

The SU(3) symmetry of the field-independent partH0 becomes more apparent if we
reformulate the nearest-neighbour coupling in terms of Gell-Mann matricesλA(x), A =
1, . . . , 8, the generators of theSU(3) algebra:

S(x)S(x + 1) + [S(x)S(x + 1)]2 − 1 = P(x, x + 1) (1.9)

= 1
3 + 1

2

8∑
A=1

λA(x)λA(x + 1).

P (x, y) is a permutation operator for spin-1 particles residing at sitesx and y. Because
of this form of H0 the numbersN+, N−, N0 of the three species+1, −1, 0 are conserved.
Therefore, the ground-state energies per siteε = ε(n+, n−, n0) are equally well characterized
by the densitiesni = Ni/N, i = +, −, 0 with the constraintn+ + n− + n0 = 1. The partial
derivatives

∂ε(n+, n−, n0)

∂ni

= µi i = +, −, 0 (1.10)
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have to be interpreted as chemical potentials. For this reason model (1.3) is equivalent to
a lattice gas model

H =
N∑

x=1

P(x, x + 1) + N+µ+ + N−µ−. (1.11)

Via an unitary transformation, the couplings of the external and internal fields in (1.3) can
be expressed in terms of the Gell-Mann matricesλ3 andλ8:

B3

N∑
x=1

λ3(x) + B8

N∑
x=1

λ8(x). (1.12)

They form the Cartan subalgebra ofSU(3). B3 and B8 can be expressed as linear
combinations ofB andD.

It was shown in [2] that the HamiltonianH0 is integrable by a nested Bethe ansatz.
The ground-state energy and dispersion relations in the sectorn+ = n− = n0 = 1

3 were
computed by Sutherland. The magnetization curveM = M(B, D = 0) in the absence of a
single site anisotropy—i.e. for the Hamiltonian (1.3) withD = 0—was derived in [3, 4].

It is the purpose of this paper to explore the whole phase diagram in theB–D plane.
The latter is presented in section 2 where we also study the magnetization along the phase
boundaries. Section 3 is devoted to a discussion of the magnetization curves as a function
of the crystal fieldD. In section 4 we concentrate on theSU(3) phase where the densities
ni of the three speciesi = +, −, 0 are non-vanishing. Lines of constant densities are
presented and parametrized by modified hypocycloides. Finally the more technical details
concerning the solution of the Bethe ansatz equations and the proper choice of the Bethe
quantum numbers are given in the appendix.

In a second paper, we will treat the dispersion curves in the various density sectors and
the behaviour of the static and dynamical structure factors in the presence of external and
internal fields.

2. The phase diagram in theB–D plane

Owing to theSU(3) symmetry of the Lai–Sutherland model, the ground-state energies are
symmetric in the densitiesn+, n−, n0:

ε(n+, n−, n0) = ε(n−, n+, n0) = ε(n+, n0, n−). (2.1)

We have computed these energies in every density sector for chains up toN = 360.
Inverting (1.10), we see how the densities depend on the chemical potentials. The latter are
related to the external fieldB and the crystal fieldD via

µ+ = D − B µ− = D + B µ0 = −2D (2.2)

which implies thatµ+ + µ− + µ0 = 0 as a consequence ofn+ + n− + n0 = 1.
Using the densities as order parameters we have constructed the complete phase diagram

in the B–D plane at temperatureT = 0. The latter is shown in figure 1.
The SU(3) symmetry of the phase diagram becomes apparent if we introduce a

‘mercedes’ star coordinate system for the chemical potentials. The symmetry is perfect
after the renormalization of the single site anisotropyD by a factor

√
3. This factor can be

traced back to the elementλ8 of the Cartan subalgebra ofSU(3):

λ8 = 1√
3

( 1 0 0
0 1 0
0 0 −2

)
. (2.3)
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Figure 1. The phase diagram of the Lai–Sutherland model (1.3).

At the origin of the diagram(B = D = 0) one finds the ground state of the Lai–Sutherland
modelH0 where the densities of the three species are equal. If we switch on the external or
internal field the densities will change. The shaded region in figure 1 represents theSU(3)

phase. This is the domain where all three densities are non-vanishing. At the phases’
boundary one of the densities becomes zero. For example, if we switch on the magnetic
field along the lineD = 0 we enter aSU(2) region (at the pointBc = 0.9415(8)) in
which the ground state contains only+1 or 0 particles. It is this special point of the phase
boundary that was already found in [3, 4].

We distinguish threeSU(2) phases of this kind according to the threeSU(2) subalgebras
of SU(3). They are usually called the T-, V- and U-spin in elementary particle physics.
In order to simplify notation we adopt these names. In theSU(2) regions, model (1.3)
becomes unitarily equivalent to the spin-1

2 Heisenberg model (1.1). For example, along the
symmetry axisµ0 (B = 0) for D 6 −1.386(4) we find the non-magnetic ground state of
(1.1). At the corner points of theSU(3) phase at(D = 4, B = 0) and(D = −2, B = ±2)

two species vanish simultanously and only one remains. The phases beyond these points
are either of ferromagnetic character or consist of a state where onlyS3 = 0 particles are
present at every site. TheSU(2) domains are separated by straight lines from these regions
where the symmetry is reduced toU(1).

In order to parametrize the phase boundaryBc, Dc we introduce an angle in such a
way that the corner points correspond toφ = 0, 2π/3 and 4π/3, respectively. Starting at
Dc = 4, Bc = 0 clockwise such a parametrization has to obey the following symmetry
relations,

Bc
(

2
3π ± φ

) = 1
2[Dc(φ) ∓ Bc(φ)] Dc

(
2
3π ± φ

) = − 1
2[Dc(φ) ± 3Bc(φ)] (2.4)
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together withBc(2π − φ) = −Bc(φ) and Dc(2π − φ) = Dc(φ). These constraints are
satisfied by the Fourier series

Bc(φ) =
∞∑

k=0

{h3k+1 sin[(3k + 1)φ] − h3k+2 sin[(3k + 2)φ]}

Dc(φ)/
√

3 =
∞∑

k=0

{h3k+1 cos[(3k + 1)φ] + h3k+2 cos[(3k + 2)φ]}
(2.5)

with unknown Fourier coefficientshi . The intervals [0, 2π/3], [2π/3, 4π/3] and [4π/3, 2π ]
for the angleφ correspond to the boundary between theSU(3) domain and the V-spin, T-
spin and U-spin region, respectively.

It should be noted that a good approximation of the phase boundary is already achieved
with the k = 0 contribution (a hypercycloide) in the expansion (2.5). Within numerical
accuracy, the data of a ring withN = 360 are reproduced correctly by means of the
parametrization:

Bc(φ) = h1 sinφ − h2 sin 2φ + h4 sin 4φ

Dc(φ)/
√

3 = h1 cosφ + h2 cos 2φ + h4 cos 4φ (2.6)

whereh1 = 1.555(5), h2 = 0.765(5) andh4 = −0.011(5).

Figure 2. The magnetizationMc(φ) plotted againstBc(φ) along the phase boundary for
0 6 φ 6 π/3. The full curve represents equation (2.7).

We have also calculated the magnetizationMc(φ) along the phase boundary for
0 6 φ 6 π/3. As can be seen from figures 2 and 3, a fairly good description is given by

Mc(φ) = 1

2

(
Bc(φ)

Bc(π/3)

)0.305(5)

= 1

2

(
Dc(0) − Dc(φ)

Dc(0) − Dc(π/3)

)0.475(5)

(2.7)

whereDc(0) = 4 andDc(π/3) = Bc(π/3) = 0.693(2).
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Figure 3. The magnetizationMc(φ) plotted againstDc(φ) along the phase boundary for
0 6 φ 6 π/3. The full curve represents equation (2.7).

Figure 4. Magnetization curves of the Lai–Sutherland model forD = −1.6, 0, 2 and 5. The
transition point from theSU(3) phase to the V-spin phase varies withD according to equation
(2.6). For−2 < D < −1.386(4) a second transition point between the T-spin phase and the
SU(3) phase enters the scene.

3. Magnetization curves

From the densitiesna(µ+, µ−, µ0) we get the magnetization curvesM = M(B, D) for
fixed values ofD. The latter are shown in figure 4 forD = −1.6, 0, 2, 5. In these curves
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one observes discontinuities in the slopes at those magnetic fields where the system passes
the phase boundaries in figure 1.

It is convenient to distinguish the following regimes.

(i) Dc(2π/3) = −2 < D < −2Dc(π/3) = −1.386(4). At B = 0 we start in the T-spin
phase. The magnetization curve is identical to that of theSU(2) spin-1

2 model (1.1) up to
a normalization factor of 2. AtBc1(φ1) with 2π/3 < φ1 < π we enter theSU(3) phase. In
theD = −1.6 curve of figure 4 this point occurs atB = 1.28 andM = 0.36. Here the slope
of the magnetization curve changes discontinuously. At a magnetic fieldBc2(φ2) > Bc1

with π/3 < φ2 < 2π/3 we leave theSU(3) phase and enter the V-spin domain where the
magnetization curve is again ofSU(2) type.

(ii) −2Dc(π/3) = −1.386(4) 6 D 6 4. At B = 0 we start in theSU(3) phase which
we leave atB = Bc(D), where we enter the V-spin phase. The critical fieldBc(D) and
the corresponding magnetizationMc(D) decrease with increasing values ofD. There is a
discontinuity in the slope of the magnetization curve at the transition point. AboveBc(D)

the magnetization curve is ofSU(2) type. The special caseD = 0 has been treated
previously in [3, 4].

(iii) D > 4. At B = 0 we start in the large-D phase, where the magnetization vanishes.
There is a gap in the exitation spectrum and, therefore, a finite magnetic fieldB = D − 4
is needed to reach a magnetic state. At this value ofB, we pass to the V-spin phase. Here
the magnetization curve is again ofSU(2) type.

The singular behaviour of the magnetization curve in theSU(3) phase, if one approaches
the boundary to the V-spin domain, is well described by

1 − M

Mc(D)
= −

(
1 − B

Bc(D)

)α

(3.1)

where the critical exponent

α = 0.52(2) (3.2)

appears to be independent ofD.
The saturation fieldBs(D), which is necessary for magnetizationM = 1, can be read

off figure 1:

Bs(D) =
{

2 for D 6 −2

D + 4 for D > −2.
(3.3)

The approach to this limiting value in the V-spin or T-spin phase is governed by the square
root singularity ofSU(2) type:

M − 1 ∼
√

Bs − B. (3.4)

A complete view on theB- andD-dependence of the magnetizationM(B, D) is presented
in figure 5.

4. Lines of constant density

The inherentSU(3) symmetry of the Lai–Sutherland model in external and internal fields
becomes apparent in a plot of curves of constant density. The latter is given in figure 6.

Let us start with the caseni = 1
2. This curve is represented by the dashed curve, which

meets the boundaries of theSU(3) phase at three points. At these points the coordinate
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Figure 5. The magnetization curves of the Lai–Sutherland model. The different phases of the
model are coloured differently. From left to right they are the T-spin-,SU(3)-, V-spin- and
‘large D’-phase. The top of the figure is the ferromagnetic phase withn+ = 1.

Figure 6. Curves of constant density in theSU(3) phase. Which curve belongs to which density
na , a = +, −, 0 is explained in the text.

axes for the chemical potentialsµi , i = +, −, 0, cross theSU(3)-phase boundary. The
µi-axes divide the dashed curve into three sections: we haven0 = 1

2, n+ = 1
2 andn− = 1

2
between theµ+µ−, µ−µ0 andµ0µ+ axes, respectively.
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Curves of constant density withni = 1
3, 2

3 have ‘clover’ form and are represented by the
dotted curve in figure 6. The curve is divided into six branches by the six tangential points
with the SU(3) phase boundary. Starting at theSU(3) symmetric pointD = B = 0 and
switching onD > 0 as well asB > 0 we enter the upper right part of theSU(3) domain.
Here we haven+ = 1

3 along the dotted curve until we reach theSU(3) V-spin boundary.
Following the dotted curve further in the same sense of circulation means moving along the
curven0 = 2

3 until we reach theSU(3) U-spin boundary. Afterwards we follow the curves
along n− = 1

3 (thereby moving again through the origin),n+ = 2
3, n0 = 1

3, n− = 2
3 and

finally n+ = 1
3. Therefore, after a full revolution we get back (now for the third time) to

the SU(3) symmetric point. The curves of constant density withn = 1
4, 3

4 in figure 6 have
to be interpreted in the same sense.

In general, it is useful to combine sections withn < 1
2 fixed and 1− n fixed in order

to obtain closed and symmetric curves, which can be parametrized asBn(φ), Dn(φ) by the
angleφ, introduced already for the parametrization of the phase boundary. The symmetry
constraints are satisfied by a Fourier series of type (2.5). Moreover, it turns out that the
truncated series

Bn(φ) = h1(n) sinφ − h2(n) sin 2φ + h4(n) sin 4φ

Dn(φ)/
√

3 = h1(n) cosφ + h2(n) cos 2φ + h4(n) cos 4φ (4.1)

reproduces the numerical data with great accuracy. Indeed, the parametrization of the phase
boundary (2.6) can be interpreted as a curve of constant densityn = 0. The coefficients
hi(n), i = 1, 2, 4, are given in table 1. Forn → 1

2, h1(n) drops to zero while theh4(n)

becomes more important. Atn = 1
2 the periodicity of the curve reduces from 2π to π .

Table 1. The coefficentshi(n).

n h1(n) h2(n) h4(n)

0 1.555(5) 0.765(5)−0.011(5)
1
4 1.144(8) 0.786(8) 0.000(8)
1
3 0.820(5) 0.804(5) 0.016(5)
1
2 0.000(5) 0.837(5) 0.037(5)

For general 0< n < 1
2 the coefficentsh1(n), h2(n) andh4(n) can be calculated from the

values ofDn(φ) on the symmetry axes atφ = 0, π and an intermediate angle 0< φn < π ,
whereBn(φn) = 0:

h1(n) = Dn(0) − Dn(π)

2
√

3
h2(n) + h4(n) = Dn(0) + Dn(π)

2
√

3

h2(n) − h4(n) = Dn(φn) sinφn√
3 sin 3φn

. (4.2)

Here we have to exclude the special casen = 1
3 which corresponds toφn = π/3. For given

Dn(0), Dn(φn) andDn(π) the angleφn follows from

2Dn(φn) cosφn = Dn(0)(cos 3φn + 1) + Dn(π)(cos 3φn − 1). (4.3)

The valuesDn(φ) for φ = 0, φn, π can be determined from the densityn0(D, B = 0)

at vanishing magnetic field. The dependence on the single site anisotropyD is shown in
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Figure 7. The variation of the densityn0 along the symmetry axisB = 0 plotted against the
internal fieldD.

figure 7. It can be approximately parametrized as follows:

n0(D, B = 0) =



1

3

[
1 + D

2Dc(π/3)

]α

for −2Dc(π/3) 6 D 6 0

1
3 + γD for 0 6 D 6 D 1

2
(0)

1 − 1

2

[
4 − D

4 − D 1
2
(0)

]β

for D 1
2
(0) 6 D 6 4.

(4.4)

The parameters were found to be

γ = 0.110(5) D 1
2
(0) = 1.515(5) α = 0.460(5) β = 0.520(5). (4.5)

The three regions forD in equation (4.4) correspond to the density intervals 06 n0 6
1
3, 1

3 6 n0 6 1
2 and 1

2 6 n0 6 1, respectively. Evaluating the inverse of (4.4)—i.e.
D = D(n0, B = 0)—at n0 = n, 1−n and 1−2n, we get the valuesDn(φ) for φ = 0, φn, π

which enter on the right-hand-side of (4.2):

Dn(φ = 0) = D(n0 = 1 − n, B = 0)

Dn(φ = φn) =
{

D(n0 = 1 − 2n, B = 0) for 0 < n < 1
3

D(n0 = n, B = 0) for 1
3 < n < 1

2

Dn(φ = π) =
{

D(n0 = n, B = 0) for 0 < n < 1
3

D(n0 = 1 − 2n, B = 0) for 1
3 < n < 1

2.
(4.6)

It should be noted that the dependence of the densitiesni(B, D), i = +, −, 0, on the
external and internal fields can be reconstructed completely from the curven0 = n0(D, B =
0) making use of the approach outlined in equations (4.1)–(4.6).



The spin-1 Lai–Sutherland model: I 3961

5. Conclusions

In this paper we have investigated the solvableSU(3) spin-1 Lai–Sutherland model in
the presence of a magnetic field and a single site anisotropy. The phase diagram at
zero temperature is divided into seven regimes. In theSU(3) domain all three densities
n+, n−, n0 are non-vanishing. In the threeSU(2) domains, called U-, V- and T-spin phase,
one species is absent. In the threeU(1) domains two species are absent. The internal
symmetry of the model manifests itself in a rotation symmetry by an angle 2π/3 in the
B–D plane. The phase boundary can be well parametrized by a modified hypocycloide. A
generalization of this curve also allows for an accurate description of the curves of constant
density inside theSU(3) phase. Therefore, the full phase diagram could be reconstructed in
principle from a detailed knowledge of the variation of then0 density along the symmetry
axis B = 0. We have also studied the dependence of the magnetization curves from
the crystal field. The critical exponent which describes the singularity in the susceptibility
χ = ∂MB/∂B at the phase transition point from theSU(3) phase to the V-spin phase seems
to be 0.52, independent ofD. The transition effectively reduces the spin quantum number
from 1 to 1

2. For D < −1.386(4) we find a particularly interesting situation: switching on
the magnetic field one first starts in the T-spin phase, then enters theSU(3) phase, which
again is left to enter the V-spin phase. Therefore, we find here two transitions and two
discontinuities in the slope of the magnetization curve. It would be interesting if one could
observe such phenomena in an experiment on a quasi-one-dimensional spin-1 system at low
temperature.

In a forthcoming publication we will investigate the static and dynamical structure
factors of the spin-1 Lai–Sutherland model in the presence of an external magnetic field
B and an internal crystal fieldD. Zero frequency exitations (‘soft modes’) are of special
interest; in particular theB and D dependence of the soft mode momenta and of the
exponents for the infrared singularities. The comparison with the spin-1

2 antiferromagnetic
Heisenberg model should reveal interesting differences as well as similarities of one-
dimensional quantum spin chains with integer or half-integer spin.
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Appendix. The Bethe ansatz equations

The SU(n) Lai–Sutherland model is integrable by the nested Bethe ansatz. In theSU(3)

case, which corresponds to the spin-1 model equation (1.3), the number of Bethe ansatz
equations is two (n − 1 in general). Assuming that the three conserved quantum numbers
Na, Nb, Nc with a, b, c ∈ {−, 0, +} are ordered asNa 6 Nb 6 Nc

( with Na + Nb + Nc = N ), the two Bethe ansatz equations read:

N arctanxi = πJi +
Na+Nb∑
j=1

arctan

(
xi − xj

2

)
−

Na∑
β=1

arctan(xi − yβ) (A.1)

0 = πIα +
Na+Nb∑
j=1

arctan(xj − yα) +
Na∑

β=1

arctan

(
yα − yβ

2

)
(A.2)

for i = 1, . . . , Na + Nb and α = 1, . . . , Na.
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The a priori unknown Bethe quantum numbersJi andIα are integers or half-integers.
These quantum numbers characterize an eigenstate of the Hamiltonian (1.3). The rootsxi

of equations (A.1) and (A.2) determine the energy per site:

ε(na, nb, nc) = 1 − 4

N

Na+Nb∑
j=1

1

1 + x2
j

− B(n+ − n−) + D(n+ + n−). (A.3)

The momentum of the eigenstate is given by the sum of the Bethe quantum numbers

p = 2π

N

( Na+Nb∑
i=1

Ji +
Na∑

α=1

Iα

)
+ (Na + Nb)π mod 2π. (A.4)

In the SU(3) phase, chains of lengthN mod(3) = 0 behave differently from chains with
N mod(3) = 1, 2. Similarly, in theSU(2) phase, chains withN even or odd behave
differently [8]. We have studied chains of lengthN which are multiples of six. By
comparison of the solutions of the two Bethe ansatz equations (A.1) and (A.2) with the
results of an exact diagonalization of chains up toN = 18 we have determined the
systematics of the quantum numbersJi and Iα. We found that the ground states in a
given density sector are always given by a set of integers or half-integers with

Ji+1 − Ji = 1 and Iα+1 − Iα = 1. (A.5)

The corresponding rootsxi andyα are real. This distribution of the quantum numbers for
the ground states could be expected from the knowledge of the Bethe ansatz solutions of
the SU(2) spin-1

2 Heisenberg model [5–7]. A remarkable difference to the spin1
2 case is

that the quantum numbersIα are, in general, not distributed symmetrically around zero.
Nevertheless, we found out that with increasingNa the symmetry in the distribution of the
Iα increases. Therefore, deep inside theSU(3) phase both quantum numbersJi andIα are
distributed symmetrically around zero.
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